
Tracking @stemxcomet: Teaching Programming to Blind
Students via 3D Printing, Crisis Management, and Twitter

Shaun K. Kane
Department of Information Systems

UMBC
Baltimore, MD 21201
skane@umbc.edu

Jeffrey P. Bigham
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15217

jbigham@cs.cmu.edu

r

ABSTRACT
Introductory programming activities for students often include
graphical user interfaces or other visual media that are
inaccessible to students with visual impairments. Digital
fabrication techniques such as 3D printing offer an opportunity
for students to write programs that produce tactile objects,
providing an accessible way of exploring program output. This
paper describes the planning and execution of a four-day
computer science education workshop in which blind and visually
impaired students wrote Ruby programs to analyze data from
Twitter regarding a fictional ecological crisis. Students then wrote
code to produce accessible tactile visualizations of that data. This
paper describes outcomes from our workshop and suggests future
directions for integrating data analysis and 3D printing into
programming instruction for blind students.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.

Keywords
Education, programming, accessibility, visual impairments, crisis
informatics, 3D printing, fabrication.

1. INTRODUCTION
Advances in computer accessibility over the past few decades
have resulted in many computing devices and applications that are
accessible to blind and visually impaired individuals. However,
computer programming tools still present significant accessibility
challenges to blind people, and blind people are currently
underrepresented in computer science [8]. This effect is likely
due, at least in part, to a lack of compelling accessible
instructional materials and tools for learning how to program [7].

Developing a supportive environment in which blind students can
learn to program presents several challenges. First, the
programming tools must be accessible to the student and must
work with the assistive technology that he or she uses, e.g., a
screen reader, screen magnifier, or refreshable Braille display.
Second, the student must be provided with programming tasks

that hold their interest and provide encouraging feedback. Many
common programming exercises that have been used to entice
younger programmers, such as GUI programming or creating
graphical games, are inaccessible to blind students. Thus, finding
alternative introductory programming activities that are both
interesting and accessible to blind students could encourage more
blind students to learn to program.

While prior attempts to improve programming accessibility for
blind students have often focused on providing improved audio
feedback (e.g., [14,16]), there has been relatively little exploration
of how tactile feedback could help blind students understand their
programs or make programming more compelling. The increasing
availability of digital fabrication or “making” technologies, such
as 3D printers, presents an opportunity to connect student
programming to the creation of physical, tactile objects that could
be accessible to blind and visually impaired students.

In this paper, we describe the preparation and implementation of a
four-day computer science workshop in which blind high school
students explored Ruby programming by accessing social

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGCSE '14, March 5-8 2014, Atlanta, GA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2605-6/14/03�$15.00.
http://dx.doi.org/10.1145/2538862.2538975

Figure 1. Blind high school students in our programming
workshop analyzed Twitter data and visualized them using 3D
printing. Top: 3D model generated from Twitter data, using

our support libraries. Bottom: 3D-printed tactile graphic.

247

networking data via the Twitter API, manually explored that data
via their code, and visualized that data via an interactive iPad
application and 3D-printed tactile models (Figure 1). We then
report the results of this activity and identify additional
opportunities for integrating data analysis and 3D printing into
accessible computer science programs.

2. RELATED WORK
A common problem with mainstream programming tools and
integrated development environments (IDEs) is that they rely on
visual information to convey structure and provide helpful hints
[2]. This problem is not new, and researchers have explored
various techniques for making programming tools more accessible
to blind and visually impaired users.

One approach has been to create new programming languages that
are easier to read and write using a screen reader. APL [12] is an
audio programming language designed by and for blind
programmers. Quorum (formerly Hop) is a programming
language that was designed to be easy for both blind and sighted
novice programmers [16]. Custom programming languages can
help to overcome some of the accessibility challenges present in
mainstream programming languages, but also have limitations:
knowledge of a specialized programming language might not
transfer to mainstream programming tasks, and specialized
programming languages may restrict the programmer to specific
functionality, libraries, or development tools. Other projects have
produced accessible variations of existing programming tools,
such as Visual Basic [14] and LEGO Mindstorms [5].

Researchers have also explored how mainstream languages and
IDEs can be made more accessible. Emacspeak [10] is a screen
reader for the Emacs text editor that was designed to support
several text editing tasks, including programming tasks. Smith et
al. [15] developed a plugin for the Eclipse IDE that provided
sound feedback when blind programmers traversed code
hierarchies. PLUMB EXTRA3 [4] is a supplementary educational
tool that allows blind programming students to explore data
structures spatially using a talking graph exploration tool.

Finally, some researchers have explored curricula for introducing
existing programming tools to blind students. Ludi and
Reichlmayr [6] have used introductory robotics kits, such as
Mindstorms, to teach computer science concepts to blind and
visually impaired students in grades 7–12. Bigham et al. [2]
conducted an introductory programming workshop in which blind
high school students created instant messenger chat bots in C#.
Our current approach is similar to this prior work, in that we have
focused on teaching blind students using existing programming
technologies (Ruby, the Twitter API, and OpenSCAD [9]), but
provide supporting libraries to enable students to create working
programs faster.

3. PROGRAMMING WORKSHOP
Over the past year, our research group has explored the use of 3D
printers to create accessible technology such as tactile graphics
[3]. As part of this ongoing work, we have explored how 3D
design and printing can be used to help teach basic programming
concepts to blind students. This section describes our preparation
and implementation of a four-day introductory programming
workshop for blind high school students.

3.1 Workshop Setup
The workshop took place over four days in July and August 2013,
as part of the computer science track of the National Federation of
the Blind’s STEM-X program. STEM-X (formerly known as the
NFB Youth Slam) is a week-long summer science camp for blind
and visually impaired youth [7]. In 2013, STEM-X had fifty
attendees from across the United States. STEM-X students chose
one disciplinary track (computer science, chemistry, engineering,
robotics, or aerospace science) to explore during the week. For
four days, students spent half the day working with instructors in
their track, and half the day participating in science enrichment
and social activities. On the final day, students reconvened to
show off their work to their peers.

Students in all subject tracks worked together to solve a shared
problem: the (fictional) impact of Comet ISON. Students in the
aerospace track built a working hovercraft, students in the
chemistry track studied the science behind desalinization plants,
and students in the robotics track built robots to help find people
in trouble. Students in the computer science track monitored
comet sightings using social media and wrote programs to
produce tactile visualizations of the predicted impact zone. At the
end of each day, students came together to share status updates
about the impending comet impact, and to discuss next steps.

The computer science track featured 9 students (3 female) from
grades 8 to 12. Students varied greatly in their prior computer and
programming experience, and also varied in their visual abilities
and preferred assistive technologies. The computer science track
had 6 instructors: 2 faculty members, 2 graduate students, and 2
undergraduate students. The instructors were also assisted by 2
mentors, who helped students with any general issues that came
up, including basic computer or screen reader problems. The high
instructor-to-student ratio ensured that students did not have to
wait for help for very long if they became stuck, which was
especially beneficial as most students were programming novices.
However, students were able to make independent progress even
when instructors were unavailable, suggesting that this workshop
could work well with fewer instructors.

3.2 Programming Tools
Choosing an environment for introducing students to computer
programming can be challenging, especially for blind students,
who might have difficulties working with standard programming
tools. Thus, much of our preparation work focused on choosing
appropriate programming tools and developing supporting library
code for students to work with. Our primary goals in choosing
programming tools were to create an environment that would be
easy to start programming in, to use real programming languages
if possible, and to enable students to try out several programming
concepts over the course of the workshop.

We chose Ruby as the programming language for this workshop,
as it had a number of advantages over competing languages. First,
Ruby is a mainstream programming language that is available on
many systems, and which offers many standard libraries. Second,
Ruby syntax is comprised largely of text symbols (e.g., “if”,
“then”, “end”), and contains relatively few non-alphanumeric
symbols that may be difficult to recognize via a screen reader.
Third, Ruby provides an interactive interpreter, irb, that enables
students to learn using a “read-eval-print loop” [13]. We
considered using the Python programming language, which also
satisfies these criteria, but Python uses whitespace to delimit code

248

blocks, which could be confusing to navigate with a screen
reader.

Since students only spent about 16 hours total in the workshop,
they would be unable to make sophisticated programs completely
on their own. To enable these novice students to interact with
compelling applications, we created several library functions that
students could call to interact with more advanced features. These
functions were grouped into four major categories:

 Twitter: a wrapper for the Twitter API that enabled students
to log in, search tweets, and post tweets;

 Geocoding: functions for reverse-geocoding tweets that
contained location data;

 Data visualization: functions that added geocoded tweets to
an accessible map visualization, which could be viewed
interactively on an iOS-based device using VoiceOver;

 3D printing: functions that assembled geocoded tweets into
a 3D model of a tactile map, which could be 3D printed.

Figure 2 shows example Ruby code that illustrates some of the
functions made available in the support libraries.

Figure 2. Sample code (written by the authors) using the APIs
provided to students. By the end of the workshop, students

had experience using the Twitter API, working with variables
and functions, looping, and generating visualizations.

Students used Apple MacBook Pro laptops with the built-in
VoiceOver screen reader [1] to read and write code during the
workshop. Students wrote code using Apple’s TextEdit text
editor, and using the irb interpreter prompt running in Apple’s
Terminal program. The majority of students used screen reader
software during the workshop, while some students used screen
magnification software or refreshable Braille displays (Figure 3).

Figure 3. Students used a variety of assistive technologies to
write code. This student used both a screen reader and a

refreshable Braille display. Photo credit: National Federation
of the Blind. Used with permission.

3.3 Dataset
Students participating in each of the STEM-X tracks worked
together to solve a shared problem: tracking the trajectory of the
Comet ISON, predicting its impact spot, and directing support
resources where necessary. Students in the computer science track
were tasked with monitoring sightings of Comet ISON via posts
on Twitter and determining the comet’s likely point of impact.

We chose this task because social networks are often used to
monitor crisis events in the real world, and because tracking
mentions of Comet ISON on Twitter would require students to
gain understanding of Ruby, the Twitter API, and visualizing
data. However, since Comet ISON was not actually at risk of
striking Earth, there were no posts on Twitter discussing it. Thus,
we recruited volunteers across the United States to post geotagged
tweets describing their view of the comet. We created a custom
web application that enabled volunteers to log in using their
Twitter account, and to post a pre-written tweet describing their
comet sighting. These pre-written tweets required little effort
from volunteers, and used the volunteer’s own geographic
location and Twitter handle, thus creating a geographically
diverse data set. Tweets generated by the application were
addressed to the Twitter user @stemxcomet (to prevent followers
unaware of the project from seeing them), and featured one of
several hashtags determined by the volunteer’s location: tweets
near the expected impact site were tagged #rightonme, somewhat
distant tweets were tagged #onthehorizon, tweets from further
away were tagged #barelyseeit, and tweets from the furthest
location were tagged #notvisible. In total, volunteers generated 19
geotagged tweets from locations over the United States, and from
several international locations (Figure 4).

Figure 4. Twitter users posted sightings of Comet ISON as it

approached the Earth in the fictional STEM-X narrative.
Tweets posted close to the expected impact site were tagged
differently than tweets posted from further away, enabling

students to predict the impact site from Twitter data.

require ‘twit’ # load an external library

startup() # load twitter credentials

point = getCoordinatesForTweet(‘#stemxcomet’,0)

loc = reverseGeocode(point) # get location of tweet

tweets = searchByKeyword(‘#barelyseeit’) # search

tweets.each { |tweet| puts tweet } # looping

interactiveMap(‘#onthehorizon’) # generate map

print3D(‘#stemxcomet) # generate 3d model

post('Programming is fun!') # post to twitter

249

3.4 Workshop Curriculum
The programming workshop took place over four days, and met
for four hours each day during this time. The majority of
workshop time was spent working on programming activities.
Each day also featured a guest speaker, who called in to discuss
their work with the group. Guest speakers included a professor
and crisis informatics researcher, a blind software engineer, and a
blind computer science graduate student.

Because students began with different levels of background
knowledge, we expected that they would proceed through the
workshop activities at their own pace. Thus, students generally
worked individually on the activities, and sought guidance from
instructors or their peers if they became stuck. All workshop
activities were written out as a step-by-step tutorial and posted on
a single web page. The instructors set an approximate schedule
for the workshop, as described below, and worked with students
to help them complete each day’s tasks. The major curriculum
tasks are described below.

3.4.1 Introduction to Mac, VoiceOver, and Ruby
On the first day, students were introduced to the Macintosh
computers and VoiceOver screen reader, opening the terminal,
and running terminal commands. Students also created user
accounts on Twitter and posted their first tweets from those
accounts.

Once students became comfortable navigating with VoiceOver,
they were directed to the tutorial web site, and began writing
some basic Ruby code using the irb interpreter, including
evaluating arithmetic operations and printing strings.

3.4.2 Interacting with the Twitter API
Once they had become comfortable using the Ruby interpreter,
students downloaded the support libraries written by the
instructors and loaded them as a module in Ruby. Because the
Twitter API requires each user to be authenticated, students were
required to locate their account’s OAuth tokens and add them to
the library file. Then, students used the libraries to log into
Twitter and post a tweet via Ruby, and to begin to search tweets
by hashtags. Students performed search queries on various
Twitter hashtags using the searchByKeyword function, and
inspected the returned post objects using irb.

3.4.3 Geocoding
Students were introduced to the @stemxcomet tweets generated
by our volunteers. Students first used the searchByKeyword
function to manually explore each of the hashtags from the
generated dataset. Students were then introduced to the concept of
geotagging and GPS data, and used the provided
getCoordinatesForTweet and reverseGeocode functions to
retrieve location data from geotagged tweets. Students were asked
to explore the various tagged tweets to see if they could figure out
where the comet might strike.

3.4.4 Exploring and Visualizing Data
Following the geocoding exercise, students were introduced to
functions provided by the support libraries for visualizing
aggregate tweet data. Two forms of visualization were provided.
First, students could use the interactiveMap function and pass a
list of tweets to a web service, designed by the authors, that
plotted the tweet coordinates on a United States map (Figure 5).
The function returned a URL to the generated map, which could
be loaded in an iOS web browser and explored using VoiceOver:

touching anywhere on the screen would speak out the number of
tweets in that region of the map, while performing directional
swipe gestures would read through each of the geotagged regions.

Figure 5. Tweets tagged #stemxcomet were generated and
given location data across the United States. Geotagged tweets

could be explored on a map using a screen reader.

Students could also call the print3D function from their Ruby
code. This function passed tweet data to a second web service,
which used OpenSCAD to generate a 3D tactile graphic based on

the map. The tactile graphic is a credit-card-sized (85mm ×

54mm × 5mm) version of a United States map. Geotagged tweets

were shown on the map as bars: higher bars indicated more
geotagged tweets in that region (Figure 1). During the workshop,
the print3D function did not directly print the tactile graphic, but
instead saved a printable stereolithography (.stl) file. Because
each tactile graphic required approximately one hour to print, they
were printed overnight and returned the next day. Tactile graphics
were printed on a MakerBot Replicator 3D printer using ABS
plastic.

3.4.5 3D Printing Demonstration
On the final day, the instructors brought one of the 3D printers to
the workshop, and introduced it to the students. The instructors
provided a verbal overview of the printer and its functions, and
then began a demonstration print. While printing, students were
able to examine the printer and to touch its non-moving parts. The
instructors answered students’ many questions about the printer,
including how it worked and what could or could not be printed.
Finally, each student was given a copy of the US map tactile
graphic to take home. The tactile graphic was marked with the
tweet locations from the volunteer dataset, the location of each
student’s hometown, and the word “STEMX” in 3D-printed
Braille.

4. INSIGHTS FROM THE WORKSHOP
Overall, we considered the workshop to be successful. While not
every student completed every activity, every student spent
several days developing his or her programming skills. Spending
four days teaching high school students to program in Ruby also
provided valuable insights about the suitability of Ruby for blind
programmers, about teaching beginning programmers to explore
and visualize data, and about keeping students engaged through
an intensive programming course.

250

4.1 Using Ruby for Blind Programming
Generally, students in our workshop were successful at writing
Ruby programs, using the terminal to launch Ruby programs, and
using irb to test code. There were, however, several usability
issues relating to the interaction between Ruby and screen readers
that created minor challenges.

Keeping track of scope: As found in prior explorations of blind
programming (e.g., [2]), our novice programmers sometimes had
difficulty keeping track of their current program scope, and
entered code in invalid locations. Ruby uses the keyword “end” to
denote the end of a code block, such as a function, conditional
statement, or loop. However, it is sometimes difficult to determine
which block the “end” keyword is referring to without visual
feedback. We thus encouraged students to add commends
indicating the ends of blocks, and included such comments in our
own example code, as shown in Figure 6.

Figure 6. In our sample code, we added comments to the end
of function blocks to help students keep track of scope.

Conflicts between screen reader and console commands: The
VoiceOver screen reader uses a combination of modifier keys
(Control and Option) as a prefix for most commands. For
example, Control-Option-H opens the VoiceOver help menu.
However, VoiceOver also overrides the behavior of some keys,
such as the arrow keys, which caused confusion when students
attempted to use the arrow keys to browse the terminal or
navigate through text files. VoiceOver provides alternative modes
for accessing overridden keys, but students were not always
familiar with these modes, and sometimes forgot to activate them.

Pronunciation: Ruby uses identifiable English words for many of
its commands, and uses few unpronounceable symbols. However,
some Ruby terms were consistently mispronounced. For example,
the Ruby interpreter program, irb, is pronounced as “urb” by
VoiceOver, and was frequently misspelled by students when
using the terminal. Knowledgeable students knew to switch
VoiceOver to read character-by-character, and could correctly
copy the word, but not all VoiceOver users may know how to
handle this type of error. Ruby also pronounced some characters
in ways that could be confusing to a novice programmer. For
example, the character “-“ may be read and pronounced
differently depending on its context: it may be “minus” in an
arithmetic expression, “dash” when used as a command line
parameter, and “negative” when used as a unary operator. By
default, VoiceOver does not consider these distinctions, and
universally refers to the “-“ character as “minus”, which could be
confusing.

Typically, all of these problems were identified when the
programming exercise was tested using a screen reader, but since
the instructors were not everyday screen reader users, they
sometimes missed these errors. Testing all programs and written
content using a screen reader would help to identify and eliminate
these types of errors before students encounter them. Fortunately,

the specific problems mentioned above were all solved during the
workshop, either by altering the written instructions or by
advising students on how to change their screen reader settings.

4.2 3D Printing in Introductory CS
Students were clearly excited by the use of the 3D printer during
the workshop. When the 3D printer was demonstrated, students
paid careful attention and asked questions. Students were eager to
touch the printer and observe its mechanics. We printed tactile
graphics for each student, and most students were excited to take
the tactile graphics home as a souvenir. When students had the
opportunity to test both interactive touch screen graphics
(presented on the iPad) and tactile graphics, students clearly
seemed more interested in the tactile graphics. It is unclear
whether students preferred the tactile graphics because they were
unfamiliar, because they were accessible, or for some other
reason, but even some students who were less enthusiastic about
their programming activities were intrigued by the 3D printer
hardware and its output.

We also found that students who did not read Braille were eager
to explore the Braille printed on the tactile graphics. As Braille
literacy has declined in recent decades, and because Braille
literacy seems closely related to employment [11], using 3D-
printed objects to motivate Braille learning presents an exciting
opportunity for future work.

In general, it seemed clear that the 3D printer was a valuable
addition to the computer programming workshop curriculum.
However, there were some challenges in using the 3D printer in
the classroom. First, the printer is quite slow: the tactile graphics,

which were approximately the size of a credit card (85mm ×

54mm × 5mm) each took approximately one hour to print on the

MakerBot Replicator printer. Faster printing settings are
available, but result in a more brittle object. As a result of the
slow print time, we were not able to print each student’s tactile
graphics in class, but instead collected data at the second-to-last
meeting, printed the tactile graphics overnight, and delivered
them at the final meeting. Furthermore, even with the default
settings used, the printed tactile graphics could be quite brittle.
Some parts of the tactile graphics would easily wear or break off,
including fine details such as the 3D-printed Braille. While the
prints made with the current printer were usable, there remains
room for improving the quality and durability of the 3D-printed
tactile graphics, especially since tactile graphics are likely to be
handled frequently.

4.3 Screen Readers as Musical Instruments
One of the most intriguing outcomes from this workshop was
completely unplanned, and was instead the result of creative
procrastination from the students. Throughout the week, several
of the students took breaks from programming and decided to
have fun with the VoiceOver screen reader. These students began
adjusting the settings of VoiceOver’s speech output (speech rate,
voice, etc.) to make interesting noise, e.g., clicks, beeps, and
speech sounds. Over the course of the week, these sounds became
more musical as students took longer breaks and invested more
time in their music production.

Given the students’ interest in experimenting with the screen
reader, we set aside time on the second-to-last day to allow
students to “perform” using their instruments. Nearly all of the
students were engaged in this performance, and those who did not

def reverseGeocode(point)

 loc = Geocoder.search("#{point[0]},#{point[1]}")

 city = loc[0].city

 state = loc[0].state

 country = loc[0].country

 return "#{city},#{state},#{country}"

end

end of function

251

make music with their screen readers sometimes drummed on the
table to contribute. The final performance was recorded, and was
shared with students from the other STEM-X tracks on the final
meeting day. In general, students seemed quite excited by their
performance, and were eager to share the recording with their
peers.

5. OPPORTUNITIES FOR FUTURE WORK
Our experiences in preparing and conducting this workshop
suggest numerous possibilities for future work. First, the libraries
that we created to support workshop participants could be
extended into reusable tools to support both blind and sighted
programmers. Although tools exist for programmatically
generating tactile graphics (e.g., VizTouch [3] and OpenSCAD
[9]), these tools are not tightly integrated with standard
programming languages. Universal tools for creating tactile
visualizations of program output could benefit both blind and
sighted programmers.

Second, although the progress made during the workshop was
comparable to similar workshops with students at this ability level
(e.g., [2]), this workshop covered only a small subset of basic
programming topics. Our approach could be extended to cover
computing topics in more depth, using the provided libraries as
scaffolding that is replaced with the student’s own code over time.
This approach may even be used as the foundation of a
universally designed introductory programming course.

Third, while we did not conduct a formal evaluation of Ruby for
blind programming, our informal testing during this workshop
showed that Ruby was generally usable when programming with
a screen reader. Ruby is an open source and mainstream
programming language, and has significant potential as an
introductory language for blind programmers. A more formal
comparison between Ruby, other commercial programming
languages, and specialized programming languages could identify
opportunities and challenges to using Ruby as an introductory
language for blind programmers.

Finally, while it was not part of our formal curriculum, all of our
students were excited by the impromptu screen reader music
session. A programming workshop in which blind students were
trained to create interactive musical instruments might encourage
musically inclined students to try programming. Our goal in
including the tactile graphic production using 3D printing was to
engage students by producing something “real.” Unfortunately,
this technology is still slow, whereas the product of music could
be created in real time and therefore may be preferred.

6. CONCLUSION
Learning to program still presents many accessibility challenges
for blind and visually impaired people. One major opportunity is
to identify introductory programming experiences that are
compelling to novice programmers, but that are also accessible to
programmers with varied abilities. We argue that combining data
analysis tools with visualization tools, and with the fabrication of
tactile graphic-based visualizations, presents an ideal environment
to teach programming to blind students.

Our results from a four-day workshop show that blind students
were motivated to learn about 3D printing technologies, and to

use their programming skills to create 3D-printed artifacts. We
also found that Ruby and its interactive interpreter offer a
sufficient, if not perfect, environment for teaching blind students
to program. We hope that this work will motivate the
development of software tools and curricula to support blind
programming students in the process of exploring, analyzing, and
visualizing data.

7. ACKNOWLEDGMENTS
We thank the National Federation of the Blind for organizing the
STEM-X 2013 event. We also thank Patrick Carrington, Ben
Gershowitz, Skye Horbrook, Karim Said, Md. Iftekhar Tanveer,
and Clayonna Wheat for their help in running the workshop.

8. REFERENCES
[1] Apple. 2013. Accessibility: iOS: VoiceOver. Retrieved September 6,

2013 from http://www.apple.com/accessibility/ios/voiceover
[2] Bigham, J.P., Aller, M.B., Brudvik, J.T., Leung, J.O., Yazzolino,

L.A. and Ladner, R.E. 2008. Inspiring blind high school students to
pursue computer science with instant messaging chatbots. ACM
SIGCSE Bulletin, 40, 1 (Feb. 2008), 449–453.

[3] Brown, C. and Hurst, A. 2012. VizTouch: automatically generated
tactile visualizations of coordinate spaces. Proceedings of TEI '12,
ACM Press, 131–138.

[4] Calder, M., Cohen, R.F., Lanzoni, J., Landry, N. and Skaff, J. 2007.
Teaching data structures to students who are blind. Proceedings of
ITiCSE '07, ACM Press, 87–90.

[5] Ludi, S., Abadi, M., Fujiki, Y., Sankaran, P. and Herzberg, S. 2010.
JBrick: accessible Lego Mindstorm programming tool for users who
are visually impaired. Proceedings of ASSETS '10, ACM Press, 271–
272.

[6] Ludi, S. and Reichlmayr, T. 2011. The use of robotics to promote
computing to pre-college students with visual impairments. ACM
Transactions on Computing Education, 11, 3, 1–20.

[7] National Federation of the Blind. 2006. National Center for Blind
Youth in Science. Retrieved September 6, 2013 from
http://www.blindscience.org/ncybs-concept-paper

[8] National Science Foundation. 2013. Women, Minorities, and Persons
with Disabilities in Science and Engineering: 2013. Special Report
NSF 13-304. Retrieved December 3, 2013 from
http://www.nsf.gov/statistics/wmpd/

[9] OpenSCAD. 2013. OpenSCAD–The Programmers Solid 3D CAD
Modeller. Retrieved September 6, 2013 from
http://www.openscad.org

[10] Raman, T.V. 1996. Emacspeak—a speech interface. Proceedings of
CHI ’96, ACM Press, 66–71.

[11] Ryles, R. 1996. The impact of Braille reading skills on employment,
income, education, and reading habits. Journal of Visual Impairment
and Blindness, 90, 219–226.

[12] Sánchez, J. and Aguayo, F. 2006. APL: Audio programming
language for blind learners. Computers Helping People with Special
Needs, Springer, 1334–1341.

[13] Sandewall, E. 1978. Programming in an interactive environment: the
“Lisp” experience. ACM Computing Surveys, 10, 1, 35–71.

[14] Siegfried, R.M. 2006. Visual programming and the blind: the
challenge and the opportunity. ACM SIGCSE Bulletin, 38, 1, 275–
278.

[15] Smith, A.C., Cook, J.S., Francioni, J.M., Hossain, A., Anwar, M. and
Rahman, M.F. 2004. Nonvisual tool for navigating hierarchical
structures. Proceedings of ASSETS '04, ACM Press, 133–139.

[16] Stefik, A.M., Hundhausen, C. and Smith, D. 2011. On the design of
an educational infrastructure for the blind and visually impaired in
computer science. Proceedings of SIGCSE '11, ACM Press, 571–576.

252

